login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. exp(-x) / (1 - log(1 + x)).
3

%I #8 Dec 20 2023 08:03:17

%S 1,0,0,1,-1,8,-16,159,-659,6824,-46680,517581,-4941685,61043344,

%T -735256328,10269016939,-147207286503,2322683458544,-38298239486672,

%U 677630804946393,-12581447014620585,247342217288517496,-5096876494438056928,110338442309322274295

%N Expansion of e.g.f. exp(-x) / (1 - log(1 + x)).

%C Inverse binomial transform of A006252.

%F a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * A006252(k).

%F a(n) = (-1)^n + Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Dec 19 2023

%t nmax = 23; CoefficientList[Series[Exp[-x]/(1 - Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!

%Y Cf. A052841, A330149.

%Y Cf. A006252, A291981.

%K sign

%O 0,6

%A _Ilya Gutkovskiy_, Dec 03 2019