Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 23 2023 18:04:13
%S 1,1,2,6,25,128,754,5001,37048,303930,2732395,26657106,280039786,
%T 3149224991,37729906686,479570263690,6442902231289,91186621152460,
%U 1355582225366134,21112253012491481,343672026658191836,5834977672879651390,103130592695715620419
%N Expansion of e.g.f. exp(sinh(exp(x) - 1)).
%C Stirling transform of A003724.
%C Exponential transform of A024429.
%H Alois P. Heinz, <a href="/A330021/b330021.txt">Table of n, a(n) for n = 0..485</a>
%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A003724(k).
%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024429(k) * a(n-k).
%p g:= proc(n) option remember; `if`(n=0, 1, add(
%p binomial(n-1, j-1)*irem(j, 2)*g(n-j), j=1..n))
%p end:
%p b:= proc(n, m) option remember; `if`(n=0,
%p g(m), m*b(n-1, m)+b(n-1, m+1))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..22); # _Alois P. Heinz_, Jun 23 2023
%t nmax = 22; CoefficientList[Series[Exp[Sinh[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A003724, A009218, A011800, A024429, A080831.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Nov 27 2019