Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 13 2020 00:50:13
%S 0,0,0,1,0,0,0,3,1,0,0,2,0,0,0,6,0,2,0,2,0,0,0,6,1,0,3,2,0,0,0,10,0,0,
%T 0,6,0,0,0,6,0,0,0,2,2,0,0,12,1,2,0,2,0,6,0,6,0,0,0,4,0,0,2,15,0,0,0,
%U 2,0,0,0,13,0,0,2,2,0,0,0,12,6,0,0,4,0,0,0,6,0,4
%N a(n) = Sum_{d|n} (bigomega(d) - omega(d)).
%C Inverse Moebius transform of A046660.
%H Robert Israel, <a href="/A330018/b330018.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=1} A046660(k) * x^k / (1 - x^k).
%F a(n) = A069264(n) - A062799(n).
%F If m and n are coprime, a(m*n) = tau(m)*a(n) + tau(n)*a(m), where tau = A000005. - _Robert Israel_, Jun 12 2020
%p N:= 100: # for a(1)..a(N)
%p V:= Vector(N):
%p for d from 1 to N do
%p v:= add(t[2]-1, t=ifactors(d)[2]);
%p L:= [seq(i,i=d..N,d)]:
%p V[L]:= map(`+`,V[L],v);
%p od:
%p convert(V,list); # _Robert Israel_, Jun 12 2020
%t a[n_] := Sum[PrimeOmega[d] - PrimeNu[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
%o (PARI) a(n) = sumdiv(n, d, bigomega(d) - omega(d)); \\ _Michel Marcus_, Jun 12 2020
%Y Cf. A001221, A001222, A005117 (positions of 0's), A046660, A062799, A069264, A268340.
%K nonn
%O 1,8
%A _Ilya Gutkovskiy_, Nov 27 2019