login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330011
Number of length-n strings w over a 4-letter alphabet with the property that if x is a subword of w and |x| >= 2, then x reversed is not a subword of w.
0
1, 4, 12, 24, 48, 96, 168, 264, 456, 720, 1056, 1656, 2520, 3600, 5352, 7944, 11256, 16248, 23664, 33432, 47520, 68232, 96216, 135696, 192888, 271488, 381384, 538464, 756456, 1060488, 1490712, 2090592, 2927424, 4103712, 5746680, 8040888, 11252880, 15739896
OFFSET
1,2
COMMENTS
Asymptotically we have a(n) = C * alpha^n, where alpha ~ 1.395336944 is the largest real zero of X^4 - 2X - 1 and C ~ 71.2145756.
LINKS
Lukas Fleischer, Jeffrey Shallit, Words Avoiding Reversed Factors, Revisited, arXiv:1911.00248 [cs.FL], November 26 2019.
Index entries for linear recurrences with constant coefficients, signature (1,0,5,-3,-2,-8,1,6,5,2,-4,-2).
FORMULA
a(n) = a(n - 1) + 5a(n - 3) - 3a(n - 4) - 2a(n - 5) - 8a(n - 6) + a(n - 7) + 6a(n-8) + 5a(n-9) + 2a(n-10) - 4a(n-11) - 2a(n-12) for n >= 17.
G.f.: x*(1 + 3*x + 8*x^2 + 7*x^3 + 7*x^4 + 2*x^5 + 4*x^6 - 17*x^7 - 10*x^8 - 41*x^9 - 22*x^10 - 40*x^11 - 6*x^12 + 8*x^13) / ((1 - x)*(1 - 2*x^3)*(1 - x^3 - x^4)*(1 - 2*x^3 - x^4)). - Colin Barker, Nov 27 2019
EXAMPLE
For n = 5 the a(5) = 96 strings are 01201, 01203, 01230, 01231 and the 92 similar strings formed by permutation of the alphabet.
PROG
(PARI) Vec(x*(1 + 3*x + 8*x^2 + 7*x^3 + 7*x^4 + 2*x^5 + 4*x^6 - 17*x^7 - 10*x^8 - 41*x^9 - 22*x^10 - 40*x^11 - 6*x^12 + 8*x^13) / ((1 - x)*(1 - 2*x^3)*(1 - x^3 - x^4)*(1 - 2*x^3 - x^4)) + O(x^40)) \\ Colin Barker, Nov 27 2019
CROSSREFS
Sequence in context: A278355 A160619 A352668 * A132477 A102651 A102652
KEYWORD
nonn,easy
AUTHOR
Jeffrey Shallit, Nov 27 2019
STATUS
approved