Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Nov 26 2019 20:06:29
%S 1,2,4,8,18,40,88,192,420,922,2024,4440,9736,21352,46832,102720,
%T 225298,494144,1083804,2377112,5213736,11435312,25081112,55010496,
%U 120654744,264632554,580419672,1273036832,2792156864,6124049048,13431901808,29460245120,64615275940
%N Expansion of 1 / (1 - 2 * Sum_{k>=1} x^(k^2)).
%F G.f.: 1 / (2 - theta_3(x)), where theta_3() is the Jacobi theta function.
%F a(0) = 1; a(n) = Sum_{k=1..n} A000122(k) * a(n-k).
%t nmax = 32; CoefficientList[Series[1/(1 - 2 Sum[x^(k^2), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
%t nmax = 32; CoefficientList[Series[1/(2 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x]
%t a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
%Y Cf. A000122, A004402, A006456, A025192, A032803, A240944, A279225, A279226, A280542, A320654.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Nov 26 2019