Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 03 2022 16:16:28
%S 0,1,2,8,10,16,17,18,24,26,32,33,34,40,42,48,49,50,56,58,64,65,66,72,
%T 74,80,81,82,88,90,96,97,98,104,106,112,113,114,120,122,128,129,130,
%U 136,138,144,145,146,152,154,160,161,162,168,170,176,177,178,184,186,192,193,194
%N Numbers k such that binomial(k,3) is divisible by 8.
%C These are possible sizes for 3-symmetric graphs.
%C The possible size of 2-symmetric graphs is sequence A042948.
%C These numbers are 0, 1, 2, 8, and 10 modulo 16.
%H Colin Barker, <a href="/A329952/b329952.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F G.f.: (6*x^4+2*x^3+6*x^2+x+1)*x^2/(x^6-x^5-x+1). - _Alois P. Heinz_, Nov 29 2019
%F a(n) = a(n-1) + a(n-5) - a(n-6) for n>6. - _Colin Barker_, Nov 29 2019
%e binomial(10, 3) = 120, which is divisible by 8. Thus 10 belongs to this sequence.
%t Select[Range[200],Mod[Floor[#(#-1)(#-2)/6],8]==0&] (* _Joshua Oliver_, Nov 26 2019 *)
%t LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,8,10,16},80] (* _Harvey P. Dale_, Jul 03 2022 *)
%o (Python)
%o for n in range(200):
%o if (n*(n-1)*(n-2)//6)%8==0:
%o print(n, end=' ')
%o (PARI) for(k=0,194,my(j=binomial(k,3));if(!(j%8),print1(k,", "))) \\ _Hugo Pfoertner_, Nov 29 2019
%o (PARI) concat(0, Vec(x^2*(1 + x + 6*x^2 + 2*x^3 + 6*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^70))) \\ _Colin Barker_, Nov 29 2019
%Y Cf. A042948.
%K nonn,easy
%O 1,3
%A Sebastian Jeon and _Tanya Khovanova_, Nov 25 2019