login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] whose cycle lengths avoid squares.
3

%I #19 Oct 31 2021 07:46:57

%S 1,0,1,2,3,44,175,1434,12313,59912,1057761,9211850,118785931,

%T 1702959972,21390805423,339381890834,4027183717425,89818053205904,

%U 1477419923299393,28377482210884242,608128083110593171,11954214606663753500,269933818505222203311

%N Number of permutations of [n] whose cycle lengths avoid squares.

%H Alois P. Heinz, <a href="/A329945/b329945.txt">Table of n, a(n) for n = 0..450</a>

%H David Harry Richman and Andrew O'Desky, <a href="https://arxiv.org/abs/2012.04615">Derangements and the p-adic incomplete gamma function</a>, arXiv:2012.04615 [math.NT], 2020.

%F a(n) mod 2 = 1 - (n mod 2) = A059841(n).

%F a(n) mod 10 = period 10: repeat [1,0,1,2,3,4,5,4,3,2] = A271751(n-1) for n>0.

%p a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j), 0,

%p a(n-j)*binomial(n-1, j-1)*(j-1)!), j=1..n))

%p end:

%p seq(a(n), n=0..25);

%t a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ@Sqrt[j], 0,

%t a[n-j] Binomial[n-1, j-1] (j-1)!], {j, 1, n}]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Oct 31 2021, after _Alois P. Heinz_ *)

%Y Cf. A000290, A059841, A205801, A271751, A329944.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Nov 24 2019