login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1, a(1) = 2; for n > 1, if n is even, then a(n) = 2*a(n/2), and if n is odd, a(n) = A283980(a((n-1)/2)).
4

%I #16 Dec 29 2019 10:35:18

%S 1,2,4,6,8,36,12,30,16,216,72,900,24,180,60,210,32,1296,432,27000,144,

%T 5400,1800,44100,48,1080,360,6300,120,1260,420,2310,64,7776,2592,

%U 810000,864,162000,54000,9261000,288,32400,10800,1323000,3600,264600,88200,5336100,96,6480,2160,189000,720,37800,12600,485100,240

%N a(0) = 1, a(1) = 2; for n > 1, if n is even, then a(n) = 2*a(n/2), and if n is odd, a(n) = A283980(a((n-1)/2)).

%H Antti Karttunen, <a href="/A329887/b329887.txt">Table of n, a(n) for n = 0..8192</a>

%F a(0) = 1, a(1) = 2; for n > 1, if n is odd, a(n) = A283980(a((n-1)/2)), and if n is even, then a(n) = 2*a(n/2).

%F a(n) = A108951(A163511(n)).

%F a(2^n) = 2^(1+n). [And all the terms following after a(2^n) are > 2^(1+n).]

%F For n >= 1, a(n) = A329886(A054429(n)).

%e This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A283980 to the parent:

%e 1

%e |

%e ...................2...................

%e 4 6

%e 8......../ \........36 12......../ \........30

%e / \ / \ / \ / \

%e / \ / \ / \ / \

%e / \ / \ / \ / \

%e 16 216 72 900 24 180 60 210

%e etc.

%e A329886 is the mirror image of the same tree.

%t {1}~Join~Nest[Append[#1, If[EvenQ@ #2, 2 #1[[#2/2]], (Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1])*2^IntegerExponent[#, 2] &[#1[[(#2 - 1)/2]] ]]] & @@ {#, Length@ # + 1} &, {2}, 55] (* _Michael De Vlieger_, Dec 29 2019 *)

%o (PARI)

%o A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980

%o A329887(n) = if(n<2,1+n,if(n%2,A283980(A329887(n\2)),2*A329887(n/2)));

%Y Permutation of A025487.

%Y Cf. A054429, A108951, A163511, A283980, A329900.

%Y Cf. also A322827, A329886.

%K nonn

%O 0,2

%A _Antti Karttunen_, Dec 24 2019