login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n with runs-resistance equal to cuts-resistance minus 1.
3

%I #4 Nov 24 2019 10:00:52

%S 0,1,2,1,2,1,4,5,11,19,36,77,138,252,528,1072,2204,4634,9575,19732,

%T 40754

%N Number of compositions of n with runs-resistance equal to cuts-resistance minus 1.

%C A composition of n is a finite sequence of positive integers summing to n.

%C For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton.

%C For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

%H Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003.

%e The a(1) = 1 through a(9) = 19 compositions:

%e 1 2 3 4 5 6 7 8 9

%e 11 22 33 11113 44 11115

%e 11112 31111 11114 12222

%e 21111 111211 41111 22221

%e 112111 111122 51111

%e 111311 111222

%e 113111 111411

%e 211112 114111

%e 221111 211113

%e 1111121 222111

%e 1211111 311112

%e 1111131

%e 1111221

%e 1112112

%e 1121112

%e 1221111

%e 1311111

%e 2111211

%e 2112111

%e For example, the runs-resistance of (1221111) is 3 because we have: (1221111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have: (1221111) -> (2111) -> (11) -> (1) -> (), so (1221111) is counted under a(9).

%t runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;

%t degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]+1==degdep[#]&]],{n,0,10}]

%Y The version for binary indices is A329866.

%Y Compositions counted by runs-resistance are A329744.

%Y Compositions counted by cuts-resistance are A329861.

%Y Cf. A003242, A098504, A114901, A242882, A318928, A319411, A319416, A319420, A319421, A329864, A329865, A329867, A329868.

%K nonn,more

%O 0,3

%A _Gus Wiseman_, Nov 23 2019