login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are either odd or are congruent to {+-4, +-6, +-8, +-10} (mod 32).
5

%I #27 Mar 20 2023 06:21:29

%S 1,3,4,5,6,7,8,9,10,11,13,15,17,19,21,22,23,24,25,26,27,28,29,31,33,

%T 35,36,37,38,39,40,41,42,43,45,47,49,51,53,54,55,56,57,58,59,60,61,63,

%U 65,67,68,69,70,71,72,73,74,75,77,79,81,83,85,86,87,88

%N Numbers that are either odd or are congruent to {+-4, +-6, +-8, +-10} (mod 32).

%H G. E. Andrews, <a href="http://www.jstor.org/stable/2322727">Further Problems on Partitions</a>, Amer. Math. Monthly 94 (1987), no. 5, 437-439.

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,-1,2,-1,0,0,0,0,0,-1,2,-1).

%F From _Colin Barker_, Dec 01 2019: (Start)

%F G.f.: x*(1 + x)*(1 - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 + x^9 - x^10 + x^11 - x^12 + x^13 - x^14 + x^16) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)*(1 - x^4 + x^8)).

%F a(n) = 2*a(n-1) - a(n-2) - a(n-8) + 2*a(n-9) - a(n-10) - a(n-16) + 2*a(n-17) - a(n-18) for n>18.

%F (End)

%p lis1:=[4,6,8,10];

%p f:=proc(n,M,lis) local i;

%p if member( n mod M, lis) or member( -n mod M, lis) then 1 else 0; fi; end;

%p a:=[];

%p for n from 1 to 200 do

%p if (n mod 2) = 1 or f(n,32,lis1) = 1 then a:=[op(a), n]; fi; od:

%p a;

%t okQ[n_] := OddQ[n] || AnyTrue[{4, 6, 8, 10, 22, 24, 26, 28}, Mod[n, 32] == #&];

%t Select[Range[100], okQ] (* _Jean-François Alcover_, Mar 09 2023 *)

%Y Cf. A329780, A329781, A329782, A329783, A329784.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Nov 29 2019