login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Inverse Möbius transform of A329642.
5

%I #8 Nov 22 2019 18:54:33

%S 0,1,1,3,1,6,1,9,1,7,1,19,1,18,4,15,1,19,1,28,-1,20,1,49,-3,48,5,43,1,

%T 27,1,45,16,84,0,50,1,258,-10,58,1,59,1,89,13,228,1,107,-11,23,10,181,

%U 1,51,-17,121,-10,750,1,112,1,1364,16,67,12,84,1,301,256,65,1,128,1,3840,11,667,-8,150,1,148,-7,5460,1,143,-70,12252

%N Inverse Möbius transform of A329642.

%H Antti Karttunen, <a href="/A329645/b329645.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = Sum_{d|n} A329642(d).

%F a(n) = A323244(n) + A329646(n).

%o (PARI) A329645(n) = sumdiv(n,d,A329642(d));

%Y Cf. A156552, A323244, A329642, A329646.

%K sign

%O 1,4

%A _Antti Karttunen_, Nov 21 2019