Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 22 2019 18:54:16
%S 0,0,0,1,0,2,0,2,1,2,0,6,0,2,2,6,0,4,0,7,2,2,0,16,1,2,0,18,0,11,0,6,2,
%T 2,2,22,0,2,2,24,0,17,0,20,2,2,0,28,1,1,2,48,0,16,2,28,2,2,0,39,0,2,
%U -3,30,2,36,0,84,2,19,0,36,0,2,-2,258,2,38,0,28,4,2,0,69,2,2,2,72,0,31,2,228,2,2,2,76,0,4,14,37,0,94,0,136,-3
%N a(n) = Sum_{d|n} [-1 == A008683(n/d)] * A323244(d), where A323244(x) gives the deficiency of A156552(x).
%H Antti Karttunen, <a href="/A329643/b329643.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = Sum_{d|n} [-1 == A008683(n/d)] * (2*A156552(d) - A323243(d)).
%F a(n) = A329642(n) - A329644(n).
%F For all n, a(A000040(n)) = 0, a(A006881(n)) = 2.
%o (PARI)
%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A323243(n) = if(1==n,0,sigma(A156552(n)));
%o A329643(n) = sumdiv(n,d,(-1==moebius(n/d))*((2*A156552(d))-A323243(d)));
%Y Cf. A006881, A008683, A156552, A323243, A323244, A329642, A329644.
%Y Cf. A329646 (inverse Möbius transform).
%K sign
%O 1,6
%A _Antti Karttunen_, Nov 21 2019