login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows where row n lists the prime indices of the n-th squarefree number.
11

%I #5 Nov 19 2019 16:36:13

%S 1,2,3,1,2,4,1,3,5,6,1,4,2,3,7,8,2,4,1,5,9,1,6,10,1,2,3,11,2,5,1,7,3,

%T 4,12,1,8,2,6,13,1,2,4,14,1,9,15,2,7,16,3,5,2,8,1,10,17,18,1,11,3,6,1,

%U 2,5,19,2,9,1,3,4,20,21,1,12,4,5,1,2,6

%N Irregular triangle read by rows where row n lists the prime indices of the n-th squarefree number.

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%e Triangle begins:

%e 1: {} 33: {2,5} 66: {1,2,5} 97: {25}

%e 2: {1} 34: {1,7} 67: {19} 101: {26}

%e 3: {2} 35: {3,4} 69: {2,9} 102: {1,2,7}

%e 5: {3} 37: {12} 70: {1,3,4} 103: {27}

%e 6: {1,2} 38: {1,8} 71: {20} 105: {2,3,4}

%e 7: {4} 39: {2,6} 73: {21} 106: {1,16}

%e 10: {1,3} 41: {13} 74: {1,12} 107: {28}

%e 11: {5} 42: {1,2,4} 77: {4,5} 109: {29}

%e 13: {6} 43: {14} 78: {1,2,6} 110: {1,3,5}

%e 14: {1,4} 46: {1,9} 79: {22} 111: {2,12}

%e 15: {2,3} 47: {15} 82: {1,13} 113: {30}

%e 17: {7} 51: {2,7} 83: {23} 114: {1,2,8}

%e 19: {8} 53: {16} 85: {3,7} 115: {3,9}

%e 21: {2,4} 55: {3,5} 86: {1,14} 118: {1,17}

%e 22: {1,5} 57: {2,8} 87: {2,10} 119: {4,7}

%e 23: {9} 58: {1,10} 89: {24} 122: {1,18}

%e 26: {1,6} 59: {17} 91: {4,6} 123: {2,13}

%e 29: {10} 61: {18} 93: {2,11} 127: {31}

%e 30: {1,2,3} 62: {1,11} 94: {1,15} 129: {2,14}

%e 31: {11} 65: {3,6} 95: {3,8} 130: {1,3,6}

%t Table[PrimePi/@First/@If[k==1,{},FactorInteger[k]],{k,Select[Range[30],SquareFreeQ]}]

%Y Row sums are A319246.

%Y Row lengths are A072047.

%Y Same as A319247 with rows reversed.

%Y Composition of A000720 and A265668.

%Y Looking at all numbers instead of just squarefree numbers gives A112798.

%Y Cf. A000009, A005117, A048672, A056239, A299755, A302590.

%K nonn,tabf

%O 1,2

%A _Gus Wiseman_, Nov 18 2019