login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

MM-numbers of multiset clutters (connected weak antichains of multisets).
20

%I #6 Nov 18 2019 22:11:00

%S 1,2,3,5,7,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53,59,61,67,71,

%T 73,79,81,83,89,91,97,101,103,107,109,113,121,125,127,131,137,139,149,

%U 151,157,163,167,169,173,179,181,191,193,197,199,203,211,223,227

%N MM-numbers of multiset clutters (connected weak antichains of multisets).

%C A weak antichain of multisets is a multiset of multisets, none of which is a proper subset of any other.

%F Equals {1} followed by the intersection of A305078 and A316476.

%e The sequence of terms tother with their corresponding clutters begins:

%e 1: {} 37: {{1,1,2}} 91: {{1,1},{1,2}}

%e 2: {{}} 41: {{6}} 97: {{3,3}}

%e 3: {{1}} 43: {{1,4}} 101: {{1,6}}

%e 5: {{2}} 47: {{2,3}} 103: {{2,2,2}}

%e 7: {{1,1}} 49: {{1,1},{1,1}} 107: {{1,1,4}}

%e 9: {{1},{1}} 53: {{1,1,1,1}} 109: {{10}}

%e 11: {{3}} 59: {{7}} 113: {{1,2,3}}

%e 13: {{1,2}} 61: {{1,2,2}} 121: {{3},{3}}

%e 17: {{4}} 67: {{8}} 125: {{2},{2},{2}}

%e 19: {{1,1,1}} 71: {{1,1,3}} 127: {{11}}

%e 23: {{2,2}} 73: {{2,4}} 131: {{1,1,1,1,1}}

%e 25: {{2},{2}} 79: {{1,5}} 137: {{2,5}}

%e 27: {{1},{1},{1}} 81: {{1},{1},{1},{1}} 139: {{1,7}}

%e 29: {{1,3}} 83: {{9}} 149: {{3,4}}

%e 31: {{5}} 89: {{1,1,1,2}} 151: {{1,1,2,2}}

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];

%t stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];

%t Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]

%Y Connected numbers are A305078.

%Y Stable numbers are A316476.

%Y Clutters (of sets) are A048143.

%Y Cf. A056239, A112798, A289509, A302242, A302494, A304716, A318991, A319837, A320275, A320456, A328514, A329553, A329555.

%K nonn

%O 1,2

%A _Gus Wiseman_, Nov 18 2019