login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of natural numbers k <= n such that k^k is a square.
2

%I #51 Sep 18 2024 16:33:10

%S 1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,15,16,16,17,

%T 17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,27,28,29,29,

%U 30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40

%N Number of natural numbers k <= n such that k^k is a square.

%C For even k, k^k is always a square. For odd k, k^k is a square if and only if k is a square.

%C It seems the unrepeated terms form A266304 \ {0}. - _Ivan N. Ianakiev_, Nov 21 2019

%C Indices of unrepeated terms are A081349. - _Rémy Sigrist_, Dec 07 2019

%H David A. Corneth, <a href="/A329547/b329547.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor(n/2) + ceiling(floor(sqrt(n))/2).

%e a(5) = 3 because among 1^1, 2^2, ..., 5^5 there are 3 squares: 1^1, 2^2, and 4^4.

%t Table[Floor[n/2] + Ceiling[Floor[Sqrt[n]]/2], {n, 1, 100}]

%o (PARI) a(n) = sum(k=1, n, issquare(k^k)); \\ _Michel Marcus_, Nov 17 2019

%o (PARI) first(n) = my(res=vector(n), inc); res[1] = 1; for(i=2, n, inc = (1-(i%2)) || issquare(i); res[i] = res[i-1] + inc); res \\ _David A. Corneth_, Dec 07 2019

%o (PARI) a(n) = n\2 + (sqrtint(n)+1)\2 \\ _David A. Corneth_, Dec 07 2019

%o (Python)

%o from math import isqrt

%o def A329547(n): return (n>>1)+(isqrt(n)+1>>1) # _Chai Wah Wu_, Sep 18 2024

%Y Cf. A081349, A176693, A266304.

%K nonn,easy

%O 1,2

%A _Pablo Hueso Merino_, Nov 16 2019