login
Inflation orbit counts b^(4)(n) for the Elser-Sloane tiling.
2

%I #12 Nov 16 2019 13:59:50

%S 1,0,255,624,14640,65280,707280,4100000,33361920,214344240,1568239200,

%T 10485693840,73680216480,500245705680,3461445351120,23639283000000,

%U 162614549665680,1113034754027520,7639424429247600,52333710967281120,358890347608872240

%N Inflation orbit counts b^(4)(n) for the Elser-Sloane tiling.

%H Lars Blomberg, <a href="/A329489/b329489.txt">Table of n, a(n) for n = 1..100</a>

%H Michael Baake, and Franz Gähler, <a href="https://arxiv.org/abs/cond-mat/9809100">Symmetry structure of the Elser-Sloane quasicrystal</a>, arXiv preprint arXiv:cond-mat/9809100 (1998). See Table 1.

%F a(n) = n*A329490(n). - _Lars Blomberg_, Nov 16 2019

%Y Cf. A329488, A329490.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Nov 15 2019

%E More terms from _Lars Blomberg_, Nov 16 2019