Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Nov 13 2019 08:18:03
%S 0,1,4,10,21,43,88,177,356,714,1429,2860,5722,11445,22891,45784,91569,
%T 183139,366280,732562,1465125,2930252,5860505,11721011,23442024,
%U 46884049,93768100,187536202,375072405,750144811,1500289624,3000579249,6001158499,12002317000
%N a(n) = Sum_{i = 1..n} 2^(n - i) * A000002(i).
%F a(n + 1) = A000002(n) + 2 a(n).
%e The first 5 terms of A000002 are {1, 2, 2, 1, 1}, so a(5) = 2^4 * 1 + 2^3 * 2 + 2^2 * 2 + 2^1 * 1 + 2^0 * 1 = 43.
%t kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
%t kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
%t Table[FromDigits[kol[n],2],{n,0,30}]
%Y Cf. A000002, A054353, A088568, A288605, A296658, A329315, A329316, A329355, A329356, A329360, A329362.
%K nonn
%O 0,3
%A _Gus Wiseman_, Nov 12 2019