login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The binary expansion of a(n) is the first n terms of 2 - A000002.
3

%I #29 Jan 03 2023 10:17:03

%S 0,1,2,4,9,19,38,77,154,308,617,1234,2468,4937,9875,19750,39501,79003,

%T 158006,316012,632025,1264050,2528101,5056203,10112406,20224813,

%U 40449626,80899252,161798505,323597011,647194022,1294388045,2588776091,5177552182,10355104365

%N The binary expansion of a(n) is the first n terms of 2 - A000002.

%F a(n) = floor((1-c/2)*2^n), where c = A118270 is the Kolakoski constant. - _Lorenzo Sauras Altuzarra_, Jan 01 2023

%e a(7) = 77 has binary expansion q = {1, 0, 0, 1, 1, 0, 1}, and 2 - q is {1, 2, 2, 1, 1, 2, 1}, which is the first 7 terms of A000002.

%t kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]

%t kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];

%t Table[FromDigits[2-kol[n],2],{n,0,30}]

%Y Cf. A118270, A329361.

%Y Replacing "2 - A000002" with "A000002 - 1" gives A329355.

%Y Initial subsequences of A000002 are A329360.

%Y Cf. A121016, A211100, A275692, A296658, A329315, A329316, A329317, A329362.

%K nonn,easy

%O 0,3

%A _Gus Wiseman_, Nov 12 2019