%I #12 Dec 05 2019 04:20:19
%S 1,1,9,244,15625,1953369,421943329,144728515216,74101421733921,
%T 54020081172543625,54020155273965358921,71900880689729065267476,
%U 124244775852007098747557449,272965844447740285677448982929,749018401409375195906018756714625
%N Denominators of convergents to A309930, the constant whose continued fraction representation consists of the cubes, [0; 1, 8, 27, 64, ...].
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction</a>
%F a(0) = 1, a(1) = 1, a(n) = n^3*a(n-1) + a(n-2) for n >= 2.
%e Convergents to [0; 1, 8, 27, 64, ...]: 0, 1, 8/9, 217/244, 13896/15625, 1737217/1953369, 375252768/421943329, ...
%o (PARI) A329305_up_to_n(n) = my(v=vector(n+1)); for(i=1, n+1, if(i==1, v[i]=1, if(i==2, v[i]=1, v[i]=(i-1)^3*v[i-1]+v[i-2]))); v
%Y Cf. A309930, A329304 (numerators), A001040, A036246.
%K nonn,frac
%O 0,3
%A _Jianing Song_, Nov 30 2019