Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 10 2023 17:44:41
%S 1,1,3,9,7,93,315,1,3855,13797,3,182361,41943,9709,9256395,34636833,
%T 31,117,1857283155,105,26817356775,102280151421,91,1497207322929,
%U 89756051247,1285,84973577874915,19065,4599,4885260612740877,18900352534538475,1,63,1101298153654301589
%N Carmichael quotients to base 2: a(n) = (2^lambda(2*n-1)-1)/(2*n-1), where lambda is the Carmichael lambda function (A002322).
%H Amiram Eldar, <a href="/A329238/b329238.txt">Table of n, a(n) for n = 1..1671</a>
%H Florian Luca, Min Sha, and Igor E. Shparlinski <a href="https://doi.org/10.4064/cm6910-3-2017">On two functions arising in the study of the Euler and Carmichael quotients</a>, Colloquium Mathematicum, Vol. 149, No. 2 (2017), pp. 179-192, <a href="https://arxiv.org/abs/1705.00388">arXiv preprint</a>, arXiv:1705.00388 [math.NT] (2017).
%H Min Sha, <a href="https://doi.org/10.1007/s10998-014-0079-3">The arithmetic of Carmichael quotients</a>, Periodica Mathematica Hungarica, Vol. 71, No. 1 (2015), pp. 11-23, <a href="https://doi.org/10.1007/s10998-017-0227-7">Correction to: The arithmetic of Carmichael quotients</a>, ibid., Vol. 76, No. 2 (2018), pp. 271-273, <a href="https://arxiv.org/abs/1108.2579">preprint</a>, arXiv:1108.2579v7 [math.NT] (2011-2017).
%H Chenhuang Wu, Zhixiong Chen, and Xiaoni Du, <a href="https://doi.org/10.1587/transfun.E95.A.1197">Binary threshold sequences derived from Carmichael quotients with even numbers modulus</a>, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. 95, No. 7 (2012), pp. 1197-1199, <a href="https://www.researchgate.net/publication/258650079_Binary_Threshold_Sequences_Derived_from_Carmichael_Quotients_with_Even_Numbers_Modulus">alternative link</a>.
%e a(3) = (2^lambda(2*3 - 1) - 1)/(2*3 - 1) = (2^lambda(5) - 1)/5 = (2^4 - 1)/5 = 3.
%t a[n_] := (2^CarmichaelLambda[n] - 1)/n; Table[a[n], {n, 1, 67, 2}]
%Y Cf. A001226, A002322, A007663.
%K nonn
%O 1,3
%A _Amiram Eldar_, Nov 08 2019