login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digraphs on n unlabled vertices such that every vertex has the same outdegree.
3

%I #5 Nov 08 2019 15:35:38

%S 1,1,2,4,14,107,3080,328126,114236734,141361169088,565835083485352,

%T 8280254429732072354,401805920591472162735162,

%U 73001963040583041357650757758,44826822610575086782059677501403310,104876792026574880566541471182849498480154,841219618683014295050378892027503163229521608514

%N Number of digraphs on n unlabled vertices such that every vertex has the same outdegree.

%H Andrew Howroyd, <a href="/A329234/b329234.txt">Table of n, a(n) for n = 0..50</a>

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o E(v, x) = {my(r=1/(1-x)); for(i=1, #v, r=serconvol(r, prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g))^g)/(1 + x))); r}

%o a(n)={if(n<1, n==0, my(s=0); forpart(p=n, s+=permcount(p)*E(p, x+O(x^n))); vecsum(Vec(s))/n!)}

%Y Row sums of A329228.

%Y Cf. A000273.

%K nonn

%O 0,3

%A _Andrew Howroyd_, Nov 08 2019