The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329168 Numbers m that divide 4^(m + 1) + 1. 2

%I #21 Sep 08 2022 08:46:24

%S 1,17,4097,7361,85073,658529,3999137,72281281,285143057,628944689,

%T 854112113,1423081169,2561019281,3111576929,4298117633,5921265041,

%U 14224884929,21336998129,34317377233,50723421713,63797137889,144269032049,163834314353,187397322209,212565453281

%N Numbers m that divide 4^(m + 1) + 1.

%C Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.

%C Conjecture: For k > 1, if f(1) = p(1) equals one of the prime factors of k^2 + 1, p(i+1) equals one of the prime factors of k^(f(i)+1) + 1 greater than p(i), f(i+1) = f(i)*p(i+1), then k^(f(i) + 1) == -1 (mod f(i)) for all integers i. (Especially in this sequence, k = 4, so {f(i)} can be 17, 4097, 4298117633, ...) - _Jinyuan Wang_, Nov 16 2019

%o (Magma) [n + 1: n in [0..5000000] | Modexp(4, n + 2, n + 1) eq n ];

%o (PARI) isok(m) = Mod(4, m)^(m+1) == -1; \\ _Jinyuan Wang_, Nov 16 2019

%Y Cf. A055685.

%Y Solutions to k^(m + 1) + 1 == -1 (mod m): A296369 (k = 2), A328230 (k = 3).

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Nov 06 2019

%E a(13)-a(25) from _Giovanni Resta_, Nov 08 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 09:47 EDT 2024. Contains 375850 sequences. (Running on oeis4.)