%I #4 Nov 10 2019 20:29:26
%S 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,37,
%T 40,41,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,67,68,71,72,73,
%U 75,76,79,80,81,83,84,88,89,90,92,96,97,98,99,101,103,104
%N Numbers whose prime signature is an aperiodic word.
%C First differs from A319161 in having 1260 = 2*2 * 3^2 * 5^1 * 7^1. First differs from A325370 in having 420 = 2^2 * 3^1 * 5^1 * 7^1.
%C A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization.
%C A sequence is aperiodic if its cyclic rotations are all different.
%e The sequence of terms together with their prime signatures begins:
%e 1: ()
%e 2: (1)
%e 3: (1)
%e 4: (2)
%e 5: (1)
%e 7: (1)
%e 8: (3)
%e 9: (2)
%e 11: (1)
%e 12: (2,1)
%e 13: (1)
%e 16: (4)
%e 17: (1)
%e 18: (1,2)
%e 19: (1)
%e 20: (2,1)
%e 23: (1)
%e 24: (3,1)
%e 25: (2)
%e 27: (3)
%t aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
%t Select[Range[100],aperQ[Last/@FactorInteger[#]]&]
%Y Complement of A329140.
%Y Aperiodic compositions are A000740.
%Y Aperiodic binary words are A027375.
%Y Numbers whose binary expansion is aperiodic are A328594.
%Y Numbers whose prime signature is a Lyndon word are A329131.
%Y Numbers whose prime signature is a necklace are A329138.
%Y Cf. A025487, A097318, A112798, A124010, A178472, A181819, A304678, A329133, A329135, A329136, A329137, A329142.
%K nonn
%O 1,2
%A _Gus Wiseman_, Nov 09 2019