login
A329052
Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored acyclic graphs with n nodes of one color and m of the other.
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 21, 15, 6, 1, 1, 7, 21, 38, 38, 21, 7, 1, 1, 8, 28, 62, 82, 62, 28, 8, 1, 1, 9, 36, 95, 158, 158, 95, 36, 9, 1, 1, 10, 45, 138, 278, 356, 278, 138, 45, 10, 1, 1, 11, 55, 192, 459, 724, 724, 459, 192, 55, 11, 1
OFFSET
0,5
COMMENTS
The two color classes are not interchangeable. Adjacent nodes cannot have the same color.
LINKS
EXAMPLE
Array begins:
=======================================================
n\m | 0 1 2 3 4 5 6 7 8
----+--------------------------------------------------
0 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2 | 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
3 | 1, 4, 10, 21, 38, 62, 95, 138, 192, ...
4 | 1, 5, 15, 38, 82, 158, 278, 459, 716, ...
5 | 1, 6, 21, 62, 158, 356, 724, 1359, 2388, ...
6 | 1, 7, 28, 95, 278, 724, 1690, 3612, 7143, ...
7 | 1, 8, 36, 138, 459, 1359, 3612, 8731, 19404, ...
8 | 1, 9, 45, 192, 716, 2388, 7143, 19404, 48213, ...
...
PROG
(PARI)
EulerXY(A)={my(j=serprec(A, x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(EulerXY(s))}
{ my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }
CROSSREFS
Main diagonal is A329055.
Antidiagonal sums are A329053.
The equivalent array for labeled nodes is A328887.
Cf. A329054.
Sequence in context: A108086 A130595 A108363 * A076831 A197061 A230861
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 02 2019
STATUS
approved