OFFSET
1,5
COMMENTS
Also number of partitions of n with rank congruent to 2 mod 3. - Seiichi Manyama, May 23 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Elaine Hou, and Meena Jagadeesan, Dyson’s partition ranks and their multiplicative extensions, arXiv:1607.03846 [math.NT], 2016; The Ramanujan Journal 45.3 (2018): 817-839. See Table 3.
FORMULA
From Seiichi Manyama, May 23 2023: (Start)
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) * (1+x^k) / (1+x^k+x^(2*k)). (End)
MAPLE
b:= proc(n, i, r) option remember; `if`(n=0 or i=1,
`if`(irem(r+n, 3)=0, 1, 0), b(n, i-1, r)+
b(n-i, min(n-i, i), irem(r+1, 3)))
end:
a:= proc(n) option remember; add(
b(n-i, min(n-i, i), modp(2-i, 3)), i=1..n)
end:
seq(a(n), n=1..60); # Alois P. Heinz, Nov 11 2019
MATHEMATICA
b[n_, i_, r_] := b[n, i, r] = If[n == 0 || i == 1, If[Mod[r + n, 3] == 0, 1, 0], b[n, i - 1, r] + b[n - i, Min[n - i, i], Mod[r + 1, 3]]];
a[n_] := a[n] = Sum[b[n - i, Min[n - i, i], Mod[2 - i, 3]], {i, 1, n}];
Array[a, 60] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)
PROG
(PARI) my(N=60, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)*(1+x^k)/(1+x^k+x^(2*k))))) \\ Seiichi Manyama, May 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 09 2019
EXTENSIONS
a(22)-a(50) from Lars Blomberg, Nov 11 2019
STATUS
approved