login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x>=0} exp(-x^2*erf(x)) dx.
0

%I #36 May 31 2023 04:27:12

%S 9,7,2,1,0,6,9,9,2,7,6,9,1,7,8,5,9,3,1,5,1,0,7,7,8,7,5,4,4,2,3,9,1,1,

%T 7,5,5,5,4,2,7,2,1,8,3,3,8,5,5,6,9,9,0,0,9,7,2,2,9,1,0,4,0,8,4,4,1,8,

%U 8,8,7,5,9,9,5,8,2,2,0,0,3,3,4,1,0,6,7,8,2,1,8,4,0,1,2,5,8,7,3,4

%N Decimal expansion of Integral_{x>=0} exp(-x^2*erf(x)) dx.

%C The integral defines a probability distribution over the positive real line and it behaves similarly to the error function.

%H Zeraoulia Rafik, Alvaro H. Salas, and David L. Ocampo, <a href="https://doi.org/10.1155/2018/5146794">A New Special Function and Its Application in Probability</a>, International Journal of Mathematics and Mathematical Sciences, vol. 2018, Article ID 5146794, 12 pages, 2018.

%e 0.9721069927691785931510778754423911755542721833855699009722910408441888759....

%p evalf(Integrate(exp(-x^2*erf(x)), x = 0..infinity), 120); # _Vaclav Kotesovec_, Nov 02 2019

%t RealDigits[NIntegrate[Exp[-x^2*Erf[x]], {x, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, May 31 2023 *)

%Y Cf. A103988.

%K nonn,cons

%O 0,1

%A _R Zeraoulia_, Nov 01 2019