login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m that are neither arithmetic (A003601) nor antiharmonic (A020487).
2

%I #9 Sep 08 2022 08:46:24

%S 2,8,10,12,18,24,26,28,32,34,40,48,52,58,63,72,74,75,76,80,82,84,88,

%T 90,98,104,106,108,112,120,122,124,128,130,136,146,148,152,156,160,

%U 162,170,171,172,175,176,178,192,194,202,208,216,218,226,228,232,234

%N Numbers m that are neither arithmetic (A003601) nor antiharmonic (A020487).

%C Numbers m such that neither the arithmetic mean of the divisors of m nor the antiharmonic mean of the divisors of m is an integer.

%C Numbers m such that neither A(m) = A000203(m)/A000005(m) nor B(m) = A001157(m)/A000203(m) is an integer.

%C Corresponding values of A(m): 3/2, 15/4, 9/2, 14/3, 13/2, 15/2, 21/2, 28/3, 21/2, 27/2, 45/4, 62/5, ...

%C Corresponding values of B(m): 5/3, 17/3, 65/9, 15/2, 35/3, 85/6, 425/21, 75/4, 65/3, 725/27, 221/9, ...

%t Select[Range[235], !Divisible[DivisorSigma[2, #], (s = DivisorSigma[1, #])] && !Divisible[s, DivisorSigma[0, #]] &] (* _Amiram Eldar_, Dec 06 2019 *)

%o (Magma) [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(&+[d^2: d in Divisors(m)] / SumOfDivisors(m))]

%Y Cf. A000005, A000203, A001157, A003601, A277553, A328952, A328953.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Dec 03 2019