login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes that are a concatenation of two positive integers whose sum is n.
4

%I #25 Nov 01 2019 11:43:05

%S 0,0,1,0,2,2,0,2,3,0,3,4,0,3,5,0,4,2,0,6,5,0,4,5,0,6,7,0,6,9,0,6,8,0,

%T 9,8,0,7,7,0,9,10,0,11,2,0,12,12,0,10,11,0,11,14,0,3,10,0,10,12,0,16,

%U 12,0,16,14,0,14,19,0,13,17,0,12,16,0,15,2,0

%N Number of primes that are a concatenation of two positive integers whose sum is n.

%C First n > 1 with n != 0 (mod 3) and a(n) = 0 is n = 4477. - _Alois P. Heinz_, Oct 30 2019

%H Alois P. Heinz, <a href="/A328903/b328903.txt">Table of n, a(n) for n = 0..20000</a>

%F a(n) = 0 if n = 1 or n == 0 (mod 3). - _Alois P. Heinz_, Oct 30 2019

%e 1(-), 2(11), 3(-), 4(13, 31), 5(23, 41), 6(-), 7(43, 61), 8(17, 53, 71), 9(-), 10(19, 37, 73), 11(29, 47, 83, 101), 12(-), 13(67, 103, 211), ...

%p a:= proc(n) option remember; `if`(irem(n, 3)=0, 0, add(

%p `if`(isprime(parse(cat(i, n-i))), 1, 0), i=1..n-1))

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Oct 30 2019

%Y Cf. A000040, A008486, A008585, A066686, A067574, A154530, A328932.

%K nonn,base,look,easy

%O 0,5

%A _Juri-Stepan Gerasimov_, Oct 30 2019

%E More terms from _Alois P. Heinz_, Oct 30 2019