Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Feb 17 2020 09:31:59
%S 993803899780063855042560,2028353759451110328141864960,
%T 6476620014866676143312363520
%N Numbers that are 4-imperfect.
%H Douglas E. Iannucci, <a href="http://www.integers-ejcnt.org/g41/g41.Abstract.html">On a variation of perfect numbers</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.
%H Andrew Lelechenko, <a href="/A127724/a127724_1.txt">4-imperfect numbers</a>, Apr 19 2014.
%H Michel Marcus, <a href="/A127724/a127724_2.txt">More 4-imperfect numbers</a>, Nov 07 2017.
%H Michel Marcus, <a href="/A309806/a309806.gp.txt">solveIMP PARI script</a>
%H Michel Marcus, <a href="/A328860/a328860.txt">List of 4-imperfect numbers</a> (including the 2 files above), last edit Jun 2019.
%H Weiyi Zhou and Long Zhu, <a href="http://www.emis.de/journals/INTEGERS/papers/j1/j1.Abstract.html">On k-imperfect numbers</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 9 (2009), #A01.
%o (PARI) solveIMP(1, 4, 10^24)
%Y Cf. A127724 (k-imperfect), A127725 (2-imperfect), A127726 (3-imperfect).
%Y Cf. A309806 (the k values).
%Y Cf. A206369 (the rho function).
%K nonn,more,bref
%O 1,1
%A _Michel Marcus_, Feb 16 2020