Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 18 2024 09:27:20
%S 0,-1,1,-2,2,-3,-1,1,3,-4,4,-5,-3,3,5,-6,-2,2,6,-7,-5,-3,-1,1,3,5,7,
%T -8,8,-9,-7,7,9,-10,-6,6,10,-11,-9,-7,-5,5,7,9,11,-12,-4,4,12,-13,-11,
%U -5,-3,3,5,11,13,-14,-10,-6,-2,2,6,10,14
%N Irregular table read by rows; for any n >= 0, the n-th row contains the numbers of the form u - v with u + v = n and u AND v = 0 (where AND denotes the bitwise AND operator), in ascending order.
%C The n-th row:
%C - has A001316(n) terms,
%C - has -n as first term and n as last term,
%C - has least positive term T(n, A001316(n)/2+1) = A080079(n) (when n > 0).
%H Rémy Sigrist, <a href="/A328732/b328732.txt">Table of n, a(n) for n = 0..6562</a> (Rows for n = 0..256)
%H Rémy Sigrist, <a href="/A328732/a328732.png">Scatterplot of (n, T(n, k)) for n = 0..1024 and k = 1..A001316(n)</a>
%e Table begins:
%e 0;
%e -1, 1;
%e -2, 2;
%e -3, -1, 1, 3;
%e -4, 4;
%e -5, -3, 3, 5;
%e -6, -2, 2, 6;
%e -7, -5, -3, -1, 1, 3, 5, 7;
%e -8, 8;
%e -9, -7, 7, 9;
%e -10, -6, 6, 10;
%e -11, -9, -7, -5, 5, 7, 9, 11;
%e -12, -4, 4, 12;
%e -13, -11, -5, -3, 3, 5, 11, 13;
%e ...
%o (PARI) row(n) = my (r=[0], b=Vecrev(binary(n))); for (k=0, #b-1, if (b[k+1], r=concat(apply(v -> [v-2^k,v+2^k], r)))); Set(r)
%Y Cf. A001316, A080079.
%K sign,base,tabf
%O 0,4
%A _Rémy Sigrist_, Oct 26 2019