login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of (1+x)/(x^2-3x+1)).
2

%I #9 Jun 04 2022 22:03:41

%S 1,1,4,-2,-1,11,-12,3,1,29,-44,24,-4,-1,76,-145,110,-40,5,1,199,-456,

%T 435,-220,60,-6,-1,521,-1393,1596,-1015,385,-84,7,1,1364,-4168,5572,

%U -4256,2030,-616,112,-8,-1,3571,-12276,18756,-16716,9576,-3654,924,-144

%N Irregular triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of (1+x)/(x^2-3x+1)).

%C The first 201 polynomials are irreducible. Column 1 of the array: A002879 (odd-indexed Lucas numbers). Row sums: A000032 (Lucas numbers). Alternating row sums: essentially 5*A030191.

%e First eight rows:

%e 1, 1;

%e 4, -2, -1;

%e 11, -12, 3, 1;

%e 29, -44, 24, -4, -1;

%e 76, -145, 110, -40, 5, 1;

%e 199, -456, 435, -220, 60, -6, -1;

%e 521, -1393, 1596, -1015, 385, -84, 7, 1;

%e 1364, -4168, 5572, -4256, 2030, -616, 112, -8, -1;

%e First eight polynomials:

%e 1 + x

%e 4 - 2 x - x^2

%e 11 - 12 x + 3 x^2 + x^3

%e 29 - 44 x + 24 x^2 - 4 x^3 - x^4

%e 76 - 145 x + 110 x^2 - 40 x^3 + 5 x^4 + x^5

%e 199 - 456 x + 435 x^2 - 220 x^3 + 60 x^4 - 6 x^5 - x^6

%e 521 - 1393 x + 1596 x^2 - 1015 x^3 + 385 x^4 - 84 x^5 + 7 x^6 + x^7

%e 1364 - 4168 x + 5572 x^2 - 4256 x^3 + 2030 x^4 - 616 x^5 + 112 x^6 - 8 x^7 - x^8

%t g[x_, n_] := Numerator[ Factor[D[(1 + x)/(x^2 - 3 x + 1), {x, n}]]]

%t Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)

%t h[n_] := CoefficientList[g[x, n]/n!, x]

%t Table[h[n], {n, 0, 10}]

%t Column[%] (* A328647 array *)

%Y Cf. A328646, A002879, A000032.

%K tabf,sign

%O 0,3

%A _Clark Kimberling_, Nov 01 2019