%I #11 Oct 14 2021 19:08:17
%S 0,1,2,3,4,6,7,8,12,14,15,16,24,26,28,30,31,32,48,52,56,58,60,62,63,
%T 64,96,100,104,106,108,112,116,118,120,122,124,126,127,128,192,200,
%U 208,212,216,220,224,228,232,234,236,240,244,246,248,250,252,254,255
%N Numbers whose reversed binary expansion, without the most significant digit, is a necklace.
%C Offset is 0 to be consistent with A257250.
%C A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.
%e The sequence of terms together with their binary expansions and binary indices begins:
%e 0: 0 ~ {}
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 3: 11 ~ {1,2}
%e 4: 100 ~ {3}
%e 6: 110 ~ {2,3}
%e 7: 111 ~ {1,2,3}
%e 8: 1000 ~ {4}
%e 12: 1100 ~ {3,4}
%e 14: 1110 ~ {2,3,4}
%e 15: 1111 ~ {1,2,3,4}
%e 16: 10000 ~ {5}
%e 24: 11000 ~ {4,5}
%e 26: 11010 ~ {2,4,5}
%e 28: 11100 ~ {3,4,5}
%e 30: 11110 ~ {2,3,4,5}
%e 31: 11111 ~ {1,2,3,4,5}
%e 32: 100000 ~ {6}
%e 48: 110000 ~ {5,6}
%e 52: 110100 ~ {3,5,6}
%t neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
%t Select[Range[0,100],#<=1||neckQ[Reverse[Rest[IntegerDigits[#,2]]]]&]
%Y The dual non-reversed version is A257250.
%Y The dual non-reversed version involving all digits is A065609.
%Y The version involving all digits is A328595.
%Y The non-reversed version is A328668.
%Y Binary necklaces are A000031.
%Y Cf. A000120, A001037, A003714, A008965, A014081, A121016, A164707, A275692, A328594, A328596.
%K nonn
%O 0,3
%A _Gus Wiseman_, Oct 30 2019