Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 27 2019 04:58:26
%S 1,0,0,0,0,2,0,4,2,7,12,11,22,26,55,63,99,149,215,324,458,699,1006,
%T 1492,2185,3202,4734,6928,10242,14951,22023,32365,47557,69905,102633,
%U 150983,221712,325918,478841,703647,1034103,1519431,2233061,3281003,4821790,7085358
%N Number of compositions of n with no part circularly followed by a divisor.
%C A composition of n is a finite sequence of positive integers summing to n.
%C Circularity means the last part is followed by the first.
%H Andrew Howroyd, <a href="/A328598/b328598.txt">Table of n, a(n) for n = 0..200</a>
%F a(n > 0) = A318726(n) - 1.
%e The a(5) = 2 through a(12) = 22 compositions (empty column not shown):
%e (2,3) (2,5) (3,5) (2,7) (3,7) (2,9) (5,7)
%e (3,2) (3,4) (5,3) (4,5) (4,6) (3,8) (7,5)
%e (4,3) (5,4) (6,4) (4,7) (2,3,7)
%e (5,2) (7,2) (7,3) (5,6) (2,7,3)
%e (2,4,3) (2,3,5) (6,5) (3,2,7)
%e (3,2,4) (2,5,3) (7,4) (3,4,5)
%e (4,3,2) (3,2,5) (8,3) (3,5,4)
%e (3,5,2) (9,2) (3,7,2)
%e (5,2,3) (2,4,5) (4,3,5)
%e (5,3,2) (4,5,2) (4,5,3)
%e (2,3,2,3) (5,2,4) (5,3,4)
%e (3,2,3,2) (5,4,3)
%e (7,2,3)
%e (7,3,2)
%e (2,3,2,5)
%e (2,3,4,3)
%e (2,5,2,3)
%e (3,2,3,4)
%e (3,2,5,2)
%e (3,4,3,2)
%e (4,3,2,3)
%e (5,2,3,2)
%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Not/@Divisible@@@Partition[#,2,1,1]&]],{n,0,10}]
%o (PARI)
%o b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
%o seq(n)={concat([1], sum(k=1, n, b(n, k, (i,j)->i%j<>0)))} \\ _Andrew Howroyd_, Oct 26 2019
%Y The necklace version is A328600, or A318729 without singletons.
%Y The version with singletons is A318726.
%Y The non-circular version is A328460.
%Y Also forbidding parts circularly followed by a multiple gives A328599.
%Y Partitions with no part followed by a divisor are A328171.
%Y Cf. A000740, A008965, A167606, A178470, A318748, A328187, A328508, A328593, A328597, A328601, A328603, A328609.
%K nonn
%O 0,6
%A _Gus Wiseman_, Oct 24 2019
%E Terms a(26) and beyond from _Andrew Howroyd_, Oct 26 2019