login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.
8

%I #13 Oct 27 2019 12:02:11

%S 1,1,2,3,5,8,12,21,33,57,94,167,279,491,852,1507,2647,4714,8349,14923,

%T 26642,47793,85778,154474,278322,502715,908912,1646205,2984546,

%U 5418652,9847189,17916000,32625617,59470539,108493149,198094482,361965238,661891579,1211162270

%N Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.

%C A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

%H Andrew Howroyd, <a href="/A328597/b328597.txt">Table of n, a(n) for n = 1..200</a>

%F a(n > 1) = A318728(n) - 1.

%e The a(1) = 1 through a(7) = 12 necklace compositions:

%e (1) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

%e (1,1,1) (1,1,2) (2,3) (1,1,4) (2,5)

%e (1,1,1,1) (1,1,3) (1,2,3) (3,4)

%e (1,1,1,2) (1,3,2) (1,1,5)

%e (1,1,1,1,1) (1,1,1,3) (1,1,1,4)

%e (1,2,1,2) (1,1,2,3)

%e (1,1,1,1,2) (1,1,3,2)

%e (1,1,1,1,1,1) (1,2,1,3)

%e (1,1,1,1,3)

%e (1,1,2,1,2)

%e (1,1,1,1,1,2)

%e (1,1,1,1,1,1,1)

%t neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]

%o (PARI)

%o b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}

%o seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ _Andrew Howroyd_, Oct 26 2019

%Y The non-necklace version is A328609.

%Y The non-necklace non-circular version is A167606.

%Y The version with singletons is A318728.

%Y The aperiodic case is A318745.

%Y The indivisible (instead of coprime) version is A328600.

%Y The non-coprime (instead of coprime) version is A328602.

%Y Necklace compositions are A008965.

%Y Cf. A000031, A000740, A000837, A032153, A059966, A318729, A318748, A328172, A328598, A328599, A328601.

%K nonn

%O 1,3

%A _Gus Wiseman_, Oct 23 2019

%E Terms a(21) and beyond from _Andrew Howroyd_, Oct 26 2019