Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 08 2024 11:10:06
%S 1,2,5,8,16,26,44,68,108,162,245,356,521,740,1053,1468,2045,2804,3836,
%T 5184,6988,9326,12409,16376,21546,28154,36674,47492,61317,78764,
%U 100880,128628,163553,207134,261630,329288,413395,517316,645803,803844,998282
%N Number of 3-regular bipartitions of n.
%D Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
%F a(n) ~ exp(Pi*sqrt(8*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - _Vaclav Kotesovec_, Oct 08 2024
%p f:=(k,M) -> mul(1-q^(k*j),j=1..M);
%p LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
%p S := L -> seriestolist(series(LRBP(L,80),q,60));
%p S(3);
%t nmax = 40; CoefficientList[Series[Product[1 + x^j + x^(2*j), {j, 1, nmax}]^2, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2024 *)
%Y Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
%Y Cf. A000726.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Oct 19 2019