login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n with no part divisible by the next or the prior.
10

%I #8 Oct 19 2019 14:45:38

%S 1,1,1,1,1,3,1,6,4,8,14,14,27,30,55,69,97,155,200,312,421,630,893,

%T 1260,1864,2600,3813,5395,7801,11196,15971,23126,32917,47514,67993,

%U 97670,140334,200913,289147,414119,595109,853751,1225086,1759405,2523151,3623984,5198759

%N Number of compositions of n with no part divisible by the next or the prior.

%H Andrew Howroyd, <a href="/A328508/b328508.txt">Table of n, a(n) for n = 0..1000</a>

%e The a(1) = 1 through a(11) = 14 compositions (A = 10, B = 11):

%e (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)

%e (23) (25) (35) (27) (37) (29)

%e (32) (34) (53) (45) (46) (38)

%e (43) (323) (54) (64) (47)

%e (52) (72) (73) (56)

%e (232) (234) (235) (65)

%e (252) (253) (74)

%e (432) (325) (83)

%e (343) (92)

%e (352) (254)

%e (523) (272)

%e (532) (353)

%e (2323) (434)

%e (3232) (452)

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{___,x_,y_,___}/;Divisible[y,x]||Divisible[x,y]]&]],{n,0,10}]

%o (PARI) seq(n)={my(r=matid(n)); for(k=1, n, for(i=1, k-1, r[i,k]=sum(j=1, k-i, if(i%j && j%i, r[j, k-i])))); concat([1], vecsum(Col(r)))} \\ _Andrew Howroyd_, Oct 19 2019

%Y The case of partitions is A328171.

%Y If we only forbid parts to be divisible by the next, we get A328460.

%Y Compositions with each part relatively prime to the next are A167606.

%Y Compositions with no part relatively prime to the next are A178470.

%Y Cf. A328026, A328028, A328161, A328172, A328189.

%K nonn

%O 0,6

%A _Gus Wiseman_, Oct 17 2019

%E Terms a(26) and beyond from _Andrew Howroyd_, Oct 19 2019