OFFSET
0,3
COMMENTS
Related to A035610 which is the constant term of (x+y+1/x+1/y)^(2n).
If commutativity is assumed then the constant term of (1+x+y+1/x+1/y)^n is given by A201805(n). - Andrew Howroyd, Oct 25 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
Mark Haiman, Non-commutative rational power series and algebraic generating functions, European Journal of Combinatorics, 14(4):335-9 (1993).
Robin Hankin, Discussion of this and similar sequences
Pakawut Jiradilok and Supanat Kamtue, Transportation Distance between Probability Measures on the Infinite Regular Tree, arXiv:2107.09876 [math.CO], 2021.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*A035610(k). - Andrew Howroyd, Oct 25 2019
MAPLE
h := n -> GAMMA(n+1/2)/GAMMA(n+2)*hypergeom([2, 1-n], [n+2], -3):
a := n -> 3-(-3)^n-5^n+(1/sqrt(Pi))*add(12^(k+1)*binomial(n, 2*k)*h(k), k=1..n/2):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 25 2019
PROG
(R)
library("freealg")
g <- function(p, string){constant(as.freealg(string)^p)} sapply(0:7, g, "1+x+y+X+Y")
(PARI) a(n)={my(p=3/(1+2*sqrt(1-12*x+O(x*x^(n\2))))); sum(k=0, n\2, binomial(n, 2*k)*polcoef(p, k))} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robin Hankin, Oct 16 2019
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Oct 25 2019
STATUS
approved