login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, 120, and 210.
15

%I #17 Jun 01 2022 01:55:23

%S 1,1,2,5,15,53,214,960,4701,24873,141147,853641,5472642,37024569,

%T 263342224,1962835806,15288074104,124120865849,1048092680689,

%U 9186689045482,83435365244510,783923558286071,7608398620990535,76177574145052258,785853360840424425

%N Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, 120, and 210.

%C A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i != e_{i+1} > e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 010, 021, 120, and 210.

%H Juan S. Auli and Sergi Elizalde, <a href="https://arxiv.org/abs/1906.07365">Consecutive patterns in inversion sequences II: avoiding patterns of relations</a>, arXiv:1906.07365 [math.CO], 2019.

%e The a(4)=15 length 4 inversion sequences avoiding the consecutive patterns 010, 021, 120, and 210 are 0000, 0110, 0001, 0011, 0111, 0002, 0012, 0112, 0022, 0122, 0003, 0013, 0113, 0023, and 0123.

%p # after _Alois P. Heinz_ in A328357

%p b := proc(n, x, t) option remember; `if`(n = 0, 1, add(

%p `if`(t and i <> x, 0, b(n - 1, i, x < i)), i = 0 .. n - 1))

%p end proc:

%p a := n -> b(n, n, false):

%p seq(a(n), n = 0 .. 24);

%t b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i != x, 0, b[n - 1, i, x < i]], {i, 0, n - 1}]];

%t a[n_] := b[n, n, False];

%t a /@ Range[0, 24] (* _Jean-François Alcover_, Mar 02 2020 after _Alois P. Heinz_ in A328357 *)

%Y Cf. A328357, A328358, A328429, A328430, A328432, A328433, A328434, A328435, A328436, A328437, A328438, A328439, A328440, A328441, A328442.

%K nonn

%O 0,3

%A _Juan S. Auli_, Oct 16 2019