login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328413
Numbers k such that (Z/mZ)* = C_2 X C_(2k) has solutions m, where (Z/mZ)* is the multiplicative group of integers modulo m.
2
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 53, 54, 55, 56, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 78, 81, 82, 83, 86, 87, 88, 89, 90, 95, 96, 98, 99, 102, 105, 106, 110, 111
OFFSET
1,2
COMMENTS
For n > 1, it is easy to see A114871(n)/2 is a term of this sequence. The smallest term here not of the form A114871(k)/2 is 24: 48 is not of the form (p-1)*p^k for any prime p, but (Z/mZ)* = C_2 X C_48 has solutions m = 119, 153, 238, 306.
EXAMPLE
(Z/mZ)* = C_2 X C_2 has solutions m = 8, 12; (Z/mZ)* = C_2 X C_4 has solutions m = 15, 16, 20, 30; (Z/mZ)* = C_2 X C_6 has solutions m = 21, 28, 36, 42; (Z/mZ)* = C_2 X C_8 has solutions m = 32; (Z/mZ)* = C_2 X C_10 has solutions m = 33, 44, 66; (Z/mZ)* = C_2 X C_12 has solutions m = 35, 39, 45, 52, 70, 78, 90. So 1, 2, 3, 4, 5, 6 are all terms.
PROG
(PARI) isA328413(n) = my(r=4*n, N=floor(exp(Euler)*r*log(log(r^2))+2.5*r/log(log(r^2)))); for(k=r+1, N+1, if(eulerphi(k)==r && lcm(znstar(k)[2])==r/2, return(1)); if(k==N+1, return(0)))
for(n=1, 100, if(isA328413(n), print1(n, ", ")))
CROSSREFS
Cf. A328412. Complement of A328414.
Cf. also A114871.
Sequence in context: A220506 A045546 A050026 * A174788 A129143 A039225
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 14 2019
STATUS
approved