login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let S be any integer in the range 6 <= S <= 24. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and contains at most three distinct nonzero digits d1, d2, d3 such that d1+d2+d3 = S.
8

%I #55 Apr 29 2024 09:08:00

%S 0,1,34,1033,31030,931021,27930994,837930913,25137930670,754137929941,

%T 22624137927754,678724137921193,20361724137901510,610851724137842461,

%U 18325551724137665314,549766551724137133873,16492996551724135539550,494789896551724130756581,14843696896551724116407674,445310906896551724073360953

%N Let S be any integer in the range 6 <= S <= 24. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and contains at most three distinct nonzero digits d1, d2, d3 such that d1+d2+d3 = S.

%C This sequence is the building block for the calculation of the sums of positive integers whose decimal expansion contains only three distinct, nonzero digits: see attached pdf document.

%H Pierre-Alain Sallard, <a href="/A328350/a328350_2.pdf">Integers sequences A328348 and A328350 to A328356</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (34,-123,90).

%F a(n) = (20*30^n - 29*3^n + 9)/522.

%F From _Stefano Spezia_, Oct 17 2019: (Start)

%F O.g.f.: x/(1 - 34*x + 123*x^2 - 90*x^3).

%F E.g.f.: (1/522)*(9*exp(x) - 29*exp(3*x) + 20*exp(30*x)).

%F a(n) = 34*a(n-1) - 123*a(n-2) + 90*a(n-3) for n > 2. (End)

%F a(n) = 31*a(n-1) - 30*a(n-2) + 3^n for n > 1. - _Pierre-Alain Sallard_, Dec 15 2019

%e For n=2, the sum of all positive integers whose decimal expansions consist of at most n=2 of the digits 5, 6 or 7, i.e., the sum 5+6+7+55+56+57+65+66+67+75+76+77, is equal to a(2)*(5+6+7) = 612.

%e The formula is valid for any other choice of three distinct digits. Another example: again with n=2, but let's say with the digits 1, 2 and 3, the sum 1+2+3+11+12+13+21+22+23+31+32+33 is equal to a(2)*(1+2+3) = 204.

%t Array[(20*30^# - 29*3^# + 9)/522 &, 20, 0] (* or *)

%t LinearRecurrence[{34, -123, 90}, {0, 1, 34}, 20] (* _Paolo Xausa_, Apr 29 2024 *)

%o (Python) [(20*30**n-29*3**n+9)//522 for n in range(20)]

%Y Cf. A328348, A328351, A328352, A328353, A328354, A328355, A328356.

%K nonn,base,easy

%O 0,3

%A _Pierre-Alain Sallard_, Oct 13 2019

%E Needs editing. - _N. J. A. Sloane_, Dec 12 2019