Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 25 2022 12:03:05
%S 1,2,3,4,4,5,6,7,7,8,9,10,10,11,12,12,12,13,14,15,15,16,17,18,18,19,
%T 19,19,19,20,21,22,22,23,24,24,24,25,26,26,26,27,28,29,29,29,30,31,31,
%U 32,32,32,32,33,33,33,33,34,35,36,36,37,38,38,38,39,40,41,41,41,42,43,43,44,44,44,44,45,46,47,47,47,48
%N a(n) counts the numbers in 0..n whose k-th arithmetic derivative is zero for some k >= 0.
%C a(n) is the number of terms m in A099308 such that m <= n.
%H Antti Karttunen, <a href="/A328309/b328309.txt">Table of n, a(n) for n = 0..65537</a>
%F a(0) = 1; for n > 0, a(n) = a(n-1) + A328308(n).
%F For all n >= 0, a(A099308(n)) = n.
%o (PARI)
%o up_to = 65537;
%o A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
%o A328308(n) = if(!n,1, while(n>1, n = A003415checked(n)); (n));
%o A328309list(up_to) = { my(v=vector(up_to), s=A328308(0)); for(i=1,up_to,s += A328308(i); v[i] = s); (v); };
%o v328309 = A328309list(up_to);
%o A328309(n) = if(!n,1,v328309[n]);
%Y Cf. A003415.
%Y Partial sums of A328308. A left inverse of A099308. Cf. also A328307.
%K nonn
%O 0,2
%A _Antti Karttunen_, Oct 12 2019