login
Number of integer partitions of n whose unsigned differences have the same GCD as the GCD of their parts all minus 1.
4

%I #5 Oct 09 2019 10:02:54

%S 1,1,1,2,3,6,7,13,17,25,33,51,62,92,116,160,203,281,341,469,572,754,

%T 929,1221,1466,1912,2306,2937,3548,4499,5353,6764,8062,10006,11946,

%U 14764,17455,21502,25425,30949,36579,44393,52132,63042,74000,88709,104098,124448

%N Number of integer partitions of n whose unsigned differences have the same GCD as the GCD of their parts all minus 1.

%C Zeros are ignored when computing GCD, and the empty set has GCD 0.

%e The a(1) = 1 through a(8) = 17 partitions:

%e (1) (11) (21) (31) (32) (51) (43) (53)

%e (111) (211) (41) (321) (61) (71)

%e (1111) (221) (411) (322) (332)

%e (311) (2211) (331) (431)

%e (2111) (3111) (421) (521)

%e (11111) (21111) (511) (611)

%e (111111) (2221) (3221)

%e (3211) (3311)

%e (4111) (4211)

%e (22111) (5111)

%e (31111) (22211)

%e (211111) (32111)

%e (1111111) (41111)

%e (221111)

%e (311111)

%e (2111111)

%e (11111111)

%t Table[Length[Select[IntegerPartitions[n],GCD@@Differences[#]==GCD@@(#-1)&]],{n,0,30}]

%Y The complement to these partitions is counted by A328163.

%Y The GCD of the divisors of n all minus 1 is A258409(n).

%Y The GCD of the prime indices of n all minus 1 is A328167(n).

%Y Partitions whose parts minus 1 are relatively prime are A328170.

%Y Cf. A000837, A018783, A175342, A279945, A289508, A328168, A328169.

%K nonn

%O 0,4

%A _Gus Wiseman_, Oct 07 2019