The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328124 Let (e*y)^(e*x) = (e*x)^(e*y), y <> x.  Numerators of Taylor coefficients of y about x=1. 2
 1, -1, 5, -25, 1243, -1229, 14107, -575927, 4217764, -1408003, 18804662561, -4465808232533, 561757387253483, -55382063966903, 6546034449396991, -52573598131492979, 602340739551273119407, -2476058152523734531, 9618810414948913858931, -139728831996929913343715987, 1341133476946384276848592489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..300 Mathematics StackExchange, Taylor series about x=e of x^y=y^x FORMULA y = - (x/log(e*x)) * W(-log(e*x)/(e*x)) where W is the main branch of the Lambert W function for x > 1 and the "-1" branch for x < 1. EXAMPLE y = 1 - (x-1) + (5/3)*(x-1)^2 - (25/9)*(x-1)^3 + (1243/270)*(x-1)^4 - (1229/162)*(x-1)^5 + .... MAPLE y:= -x*LambertW(-(1 + ln(x))*exp(-1)/x)/(1 + ln(x)): S:= series(y, x=1, 31) assuming x>1: seq(numer(coeff(S, x-1, j)), j=0..30); CROSSREFS Cf. A328125 (denominators). Sequence in context: A061583 A278120 A039780 * A033981 A099077 A137113 Adjacent sequences:  A328121 A328122 A328123 * A328125 A328126 A328127 KEYWORD sign AUTHOR Robert Israel, Oct 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 18:34 EDT 2021. Contains 346273 sequences. (Running on oeis4.)