login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Value of sigma(m)/(d(m)*sopf(m)) for the integers m that make this expression an integer.
4

%I #18 Sep 08 2022 08:46:24

%S 1,1,1,3,2,4,2,2,2,2,5,3,2,13,3,3,3,7,5,4,7,4,3,21,13,4,3,8,4,20,9,5,

%T 4,19,5,4,6,8,11,6,6,25,8,6,10,14,5,6,6,25,4,4,6,7,9,10,5,8,26,6,9,8,

%U 10,6,6,6,7,12,6,9,26,19,6,7,10,13,9,9,15,9,7,123

%N Value of sigma(m)/(d(m)*sopf(m)) for the integers m that make this expression an integer.

%H Michel Marcus, <a href="/A328052/b328052.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000203(A328051(n))/(A000005(A328051(n))*A008472(A328051(n))). - _Felix Fröhlich_, Oct 03 2019

%e For A328052(1)=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, so a(1) = 1.

%t f[p_, e_] := (p^(e + 1) - 1)/((e + 1)*(p - 1)); r[n_] := Times @@ (f @@@ (fct = FactorInteger[n])) / Plus @@ (fct[[;; , 1]]); Select[r /@ Range[2, 4500], IntegerQ] (* _Amiram Eldar_, Oct 03 2019 *)

%o (PARI) lista(nn) = {for (n=2, nn, my(f=factor(n)); if (denominator(q = sigma(f)/(numdiv(f)*sopf(f))) == 1, print1(q, ", ")););}

%o (Magma) [a: k in [2..5000]|IsIntegral(a) where a is DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k)))]; // _Marius A. Burtea_, Oct 03 2019

%Y Cf. A000005, A000203, A008472, A134382, A328051.

%K nonn

%O 1,4

%A _Michel Marcus_, Oct 03 2019