login
Upper bound for the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,...,n^n}.
3

%I #8 Oct 02 2019 22:39:47

%S 1,1,3,18,172,2343,42439,976050,27583338,934173632,37180409223,

%T 1711870023666,90007747560742,5346164992890599,355442084718552178,

%U 26244000000000000000,2137205155719002036203,190811368062993357765186,18577775646585813239195436,1963166636163973976912956096

%N Upper bound for the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,...,n^n}.

%H Markus Sigg, <a href="https://arxiv.org/abs/1804.02897">Gasper's determinant theorem, revisited</a>, arXiv:1804.02897 [math.CO], 2018.

%F a(n) = floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)) (Corollary 3 in M. Sigg's article).

%o (PARI) for(n=1,20,print1(floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)),", "))

%Y Cf. A301371, A309985, A328030.

%K nonn,easy

%O 0,3

%A _Hugo Pfoertner_, Oct 02 2019