Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Nov 07 2022 07:40:22
%S 1,2,3,2,5,6,7,2,9,10,11,6,13,14,15,2,17,18,19,10,21,22,23,6,25,26,9,
%T 14,29,30,31,2,33,34,35,18,37,38,39,10,41,42,43,22,45,46,47,6,49,50,
%U 51,26,53,18,55,14,57,58,59,30,61,62,63,2,65,66,67,34,69,70,71,18,73,74,75,38,77,78,79,10,9,82,83,42,85,86,87,22
%N Multiplicative with a(p^e) = p^(p-1) if e >= p, otherwise a(p^e) = p^e.
%C All terms are in A048103.
%H Antti Karttunen, <a href="/A327937/b327937.txt">Table of n, a(n) for n = 1..20000</a>
%F Multiplicative with a(p^e) = p^(p-1) if e >= p, otherwise a(p^e) = p^e.
%F For all n, A129251(a(n)) = 0, A327936(a(n)) = 1.
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 1/((p+1)*p^(p-1))) = 0.40498413761092854213... . - _Amiram Eldar_, Nov 07 2022
%t f[p_, e_] := If[e >= p, p^(p - 1), p^e]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 07 2022 *)
%o (PARI) A327937(n) = { my(f = factor(n)); for(k=1, #f~, if(f[k,2]>=f[k,1], f[k,2] = f[k,1]-1)); factorback(f); };
%Y Cf. A048103, A129251, A327936, A327938.
%K nonn,mult
%O 1,2
%A _Antti Karttunen_, Oct 01 2019