login
A327915
The 59 prime dates of each leap year of the form concatenate(month,day) with leading zero for days 1..9.
6
101, 103, 107, 109, 113, 127, 131, 211, 223, 227, 229, 307, 311, 313, 317, 331, 401, 409, 419, 421, 503, 509, 521, 523, 601, 607, 613, 617, 619, 701, 709, 719, 727, 809, 811, 821, 823, 827, 829, 901, 911, 919, 929, 1009, 1013, 1019, 1021, 1031, 1103, 1109, 1117, 1123, 1129, 1201, 1213, 1217, 1223, 1229, 1231
OFFSET
1,1
COMMENTS
In leap years all these dates come from the months January, February, ..., December, in the form m.d, with a 0 in front of the days d = 1..9, with 7, 4, 5, 4, 4, 5, 4, 6, 4, 5, 5, 6 prime dates, respectively, adding up to 59. For the corresponding leap year case with 58 prime dates see A327914.
Compared with A327349 (leap years, no 0's before days d = 1..9) one has the same differences as given in a comment in A327914 (229 appears in the present sequence and in A327349).
MATHEMATICA
Select[Flatten@ Array[Function[{m, d}, Array[FromDigits[m~Join~PadLeft[IntegerDigits[#], 2]] &, d]] @@ {IntegerDigits@ #, Which[MemberQ[{4, 6, 9, 11}, #], 30, # == 2, 29, True, 31]} &, 12], PrimeQ] (* Michael De Vlieger, Oct 03 2019 *)
fd[{m_, d_}]:=FromDigits[Flatten[{m, PadLeft[{d}, 2, 0]}]]; Select[fd[Take[#, {2, 3}]]&/@ DateRange[ {2024, 1, 1}, {2024, 12, 31}], PrimeQ] (* Harvey P. Dale, Sep 01 2023 *)
CROSSREFS
Cf. A327346 (74 prime dates d.m without leading 0 for month), A327347 (54 prime dates d.m with leading 0 for months m = 1, 3, 7, 9), A327348 (66 prime dates m.d for non-leap years), A327349 (67 prime dates, like A327348 but for leap years), A327914 (58 prime dates, the case for non-leap years).
Sequence in context: A195469 A210758 A225082 * A131687 A327914 A167844
KEYWORD
nonn,easy,fini,full
AUTHOR
Wolfdieter Lang, Sep 30 2019
STATUS
approved