login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of achiral loops (necklaces or bracelets) of length n with integer entries that cover an initial interval of positive integers.
2

%I #16 May 05 2022 04:46:05

%S 1,1,2,3,8,13,44,75,308,541,2612,4683,25988,47293,296564,545835,

%T 3816548,7087261,54667412,102247563,862440068,1622632573,14857100084,

%U 28091567595,277474957988,526858348381,5584100659412,10641342970443,120462266974148,230283190977853

%N Number of achiral loops (necklaces or bracelets) of length n with integer entries that cover an initial interval of positive integers.

%C Achiral loops may also be called periodic palindromes.

%H Andrew Howroyd, <a href="/A327868/b327868.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = (1/2)*Sum_{k=0..n} k!*(Stirling2(floor((n+1)/2), k) + Stirling2(ceiling((n+1)/2), k)) for n > 0.

%F a(2n-1) = A000670(n), a(2n) = A005649(n). - _Michael Somos_, May 04 2022

%e The a(4) = 8 achiral loops are:

%e 1111,

%e 1122, 1112, 1212, 1222,

%e 1213, 1232, 1323.

%e G.f. = 1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 13*x^5 + 44*x^6 + 75*x^7 + ... - _Michael Somos_, May 04 2022

%t a[ n_] := If[n < 0, 0, Sum[ k!*(StirlingS2[Quotient[n+1, 2], k] + StirlingS2[Quotient[n+2, 2], k]), {k, 0, n+1}]/2]; (* _Michael Somos_, May 04 2022 *)

%t a[ n_] := If[n < 0, 0, With[{m = Quotient[n+1, 2]},

%t m!*SeriesCoefficient[1/(2 - Exp@x)^Mod[n, 2, 1], {x, 0, m}]]]; (* _Michael Somos_, May 04 2022 *)

%o (PARI) a(n)={if(n<1, n==0, sum(k=0, n, k!*(stirling((n+1)\2, k, 2)+stirling(n\2+1, k, 2)))/2)}

%Y Row sums of A305540.

%Y Cf. A000670, A005649, A326895.

%K nonn

%O 0,3

%A _Andrew Howroyd_, Sep 28 2019