login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the asymptotic mean of the exponential totient function (A072911).
4

%I #8 Feb 28 2023 08:02:23

%S 1,2,5,2,7,0,7,7,8,5,3,7,5,4,4,6,1,2,6,0,5,3,7,5,0,7,5,1,9,3,4,2,8,3,

%T 0,6,0,4,3,9,2,3,7,9,6,7,1,0,8,9,1,5,3,7,3,7,4,4,8,4,9,5,1,4,0,2,9,5,

%U 7,8,3,4,3,8,6,5,4,4,2,8,6,5,0,9,5,3,7

%N Decimal expansion of the asymptotic mean of the exponential totient function (A072911).

%H László Tóth, <a href="http://ac.inf.elte.hu/Vol_024_2004/285.pdf">On certain arithmetic functions involving exponential divisors</a>, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294.

%F Equals lim_{m->oo} (1/m) Sum_{k=1..m} A072911(k).

%F Equals Product_{p prime} (1 + Sum_{e >= 3} (phi(e) - phi(e-1))/p^e), where phi is the Euler totient function (A000010).

%e 1.252707785375446126053750751934283060439237967108915...

%t $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e * (EulerPhi[e] - EulerPhi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

%Y Cf. A000010, A072911, A322887, A327837, A361013.

%K nonn,cons

%O 1,2

%A _Amiram Eldar_, Sep 27 2019