login
A327812
Number of irreducible factors in the factorization of the n-th cyclotomic polynomial over GF(3) (counted with multiplicity).
1
1, 1, 2, 1, 1, 2, 1, 2, 6, 1, 2, 2, 4, 1, 2, 2, 1, 6, 1, 2, 2, 2, 2, 4, 1, 4, 18, 2, 1, 2, 1, 2, 4, 1, 2, 6, 2, 1, 8, 4, 5, 2, 1, 2, 6, 2, 2, 4, 1, 1, 2, 4, 1, 18, 2, 4, 2, 1, 2, 4, 6, 1, 6, 2, 4, 4, 3, 2, 4, 2, 2, 12, 6, 2, 2, 2, 2, 8, 1, 8, 54, 5, 2, 4, 4, 1, 2, 4, 1, 6
OFFSET
1,3
FORMULA
Let n = 3^e*s, gcd(3,s) = 1, then a(n) = phi(n)/ord(3,s), where phi = A000010, ord(k,s) is the multiplicative order of k modulo s. See A327818 for further information.
EXAMPLE
Factorizations of the n-th cyclotomic polynomial over GF(3) for n <= 10:
n = 1: x - 1;
n = 2: x + 1;
n = 3: (x - 1)^2;
n = 4: x^2 + 1;
n = 5: x^4 + x^3 + x^2 + x + 1;
n = 6: (x + 1)^2;
n = 7: x^6 + x^5 + x^4 + x^3 + x^2 + x + 1;
n = 8: (x^2 + x - 1)*(x^2 - x - 1);
n = 9: (x - 1)^6;
n = 10: x^4 - x^3 + x^2 - x^2 + 1.
PROG
(PARI) a(n) = my(s=n/3^valuation(n, 3)); eulerphi(n)/znorder(Mod(3, s))
CROSSREFS
Cf. A000010.
Row 2 of A327818.
Sequence in context: A153919 A185286 A153905 * A319093 A228726 A346175
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Sep 26 2019
STATUS
approved